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Take-Home Message

Discrete NeuralODEs are (residual) Neural Networks

Powerful formalism for analyzing theoretical properties
of graph neural networks

Exponential receptive field introduces numerical
challenges

GPU neighborhood aggregation is not deterministic
and introduces significant noise

Deterministic GPU operations help at the cost of
increased computation time

Background

NeuralODEs for ResNets

∂x(t)
∂t

= σ(W(t)x(t) + b(t)) , t ∈ [0, T ] (1)

discretized by forward Euler scheme (∂x(t)
∂t ≈ x(t+ϵ)−x(t)

ϵ )

x(n+1) = x(n) + ϵσ(W(n+1)x(n) + b(n+1)) (2)

Here, W ∈ Rd×d, b ∈ Rd are the parameters of the system
with state x ∈ Rd at time t = ϵn ≥ 0 and σ is a nonlinear
activation function, e.g., tanh or ReLU [3].

Graph-coupled Neural ODEs for GNNs

∂X(t)
∂t

= σ(X(t)W(t) + AX(t)V(t) + b(t))
X(0) = X0

, t ∈ [0, T ] (3)

Here, X ∈ Rn×d is the feature matrix of n nodes in an undi‐
rected graph G = (V , E) with node set V and edge set E
summarized in the adjacency matrix A ∈ {0, 1}n×n [2].

Scatter Operation

Atomic operation on GPU by Pytorch Geometric [1]:
outi = outi +

∑
j

srcj (4)

Chaos in Deterministic Dynamical Systems

Nonlinear coupled systems can show chaotic behav‐
ior [4]. That means, high sensitivity to the initial con‐
dition, numerical errors, and finite precision, leading to
non‐reproducible trajectories. E.g. Double Pendulum [5]:

x′(0) = x(0) + δx(0) and λ Lya‐
punov exponent of ẋ(t) = f (x)
∥x(t) − x′(t)∥ ≈ ∥x(0) − x′(0)∥eλt

Experiments

Setup

Predicting the Eccentricity of each node requires the approx‐
imation of shortest paths [2]. Repeat 100 isolated train‐
ing and evaluation runs controlled by fixed seed on GPU,
CPU, and GPU with deterministic scatter. Model selection:
L ∈ {1, 5, 10, 15, 20} with ϵ = 1.0.

Results
L = 10

L Ranked #1 CPU Rank
1 0 5
5 0 4
10 74 1
15 12 3
20 14 2

GPU GPU‐det CPU
0.29 s 0.49 s 4.54 s
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